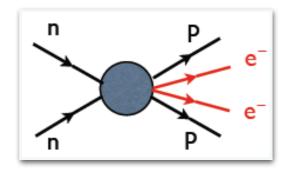
Effective theory approach to neutrinoless double beta decay

Vincenzo Cirigliano Los Alamos National Laboratory

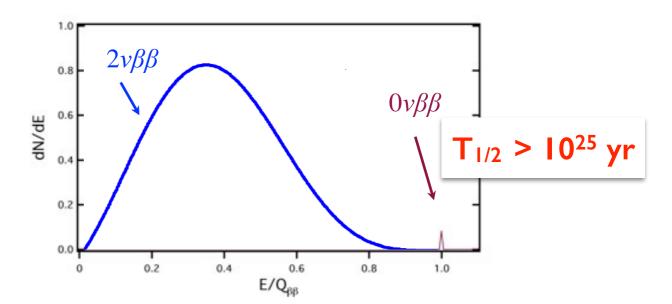
Outline

- Introduction: 0νββ decay and Lepton Number Violation (LNV)
- Effective Field Theory (EFT) framework for LNV
 - $0V\beta\beta$ from light Majorana V exchange
 - LO and N2LO chiral EFT potentials
 - A new leading short-range contribution
 - 0νββ from (multi)TeV-scale dynamics
 - LO potentials & progress on hadronic matrix elements

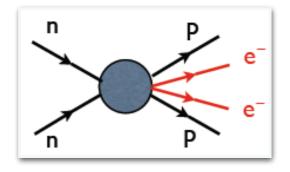
$$(N,Z) \to (N-2,Z+2) + e^- + e^-$$



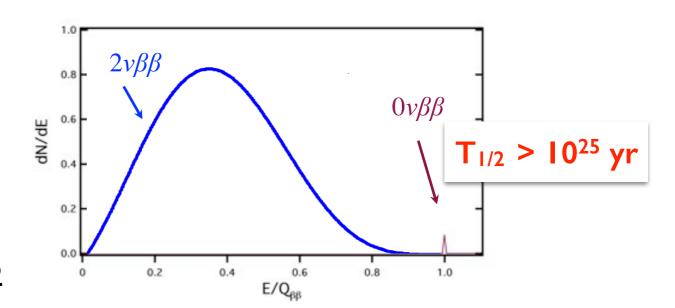
Lepton number changes by two units: $\Delta L=2$



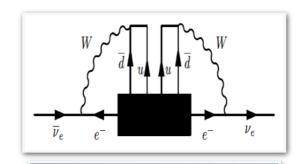
$$(N,Z) \to (N-2,Z+2) + e^- + e^-$$



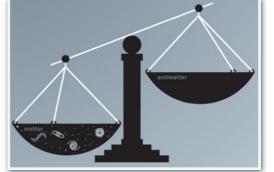
Lepton number changes by two units: $\Delta L=2$



- B-L conserved in SM $\rightarrow 0\nu\beta\beta$ observation would signal new physics
 - Demonstrate that neutrinos are Majorana fermions
 - Establish a key ingredient to generate the baryon asymmetry via leptogenesis

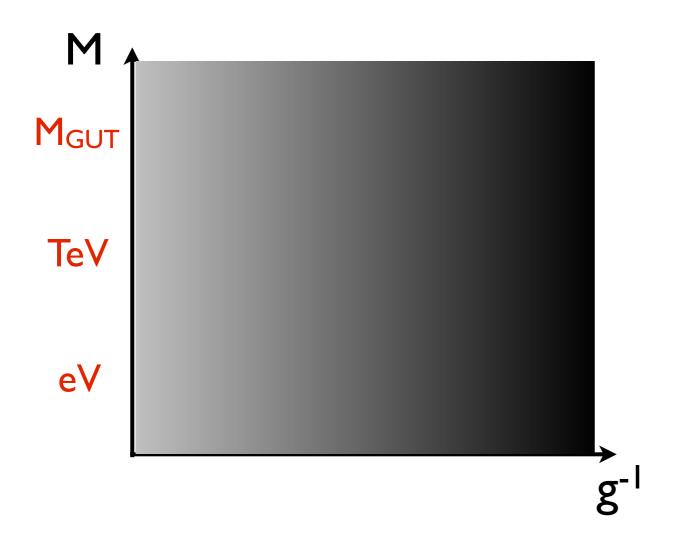


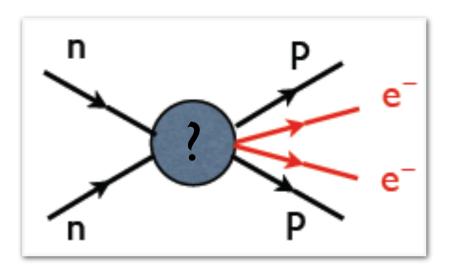
Shechter-Valle 1982



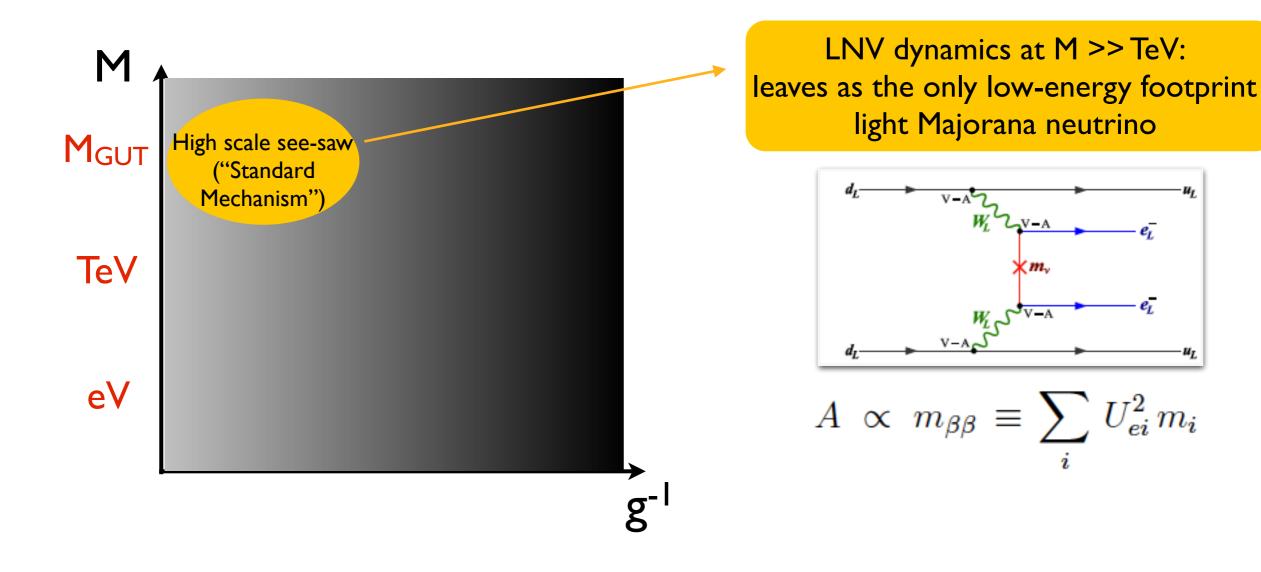
Fukujgita-Yanagida 1987

• Ton-scale $0\nu\beta\beta$ searches will probe LNV from a variety of mechanisms

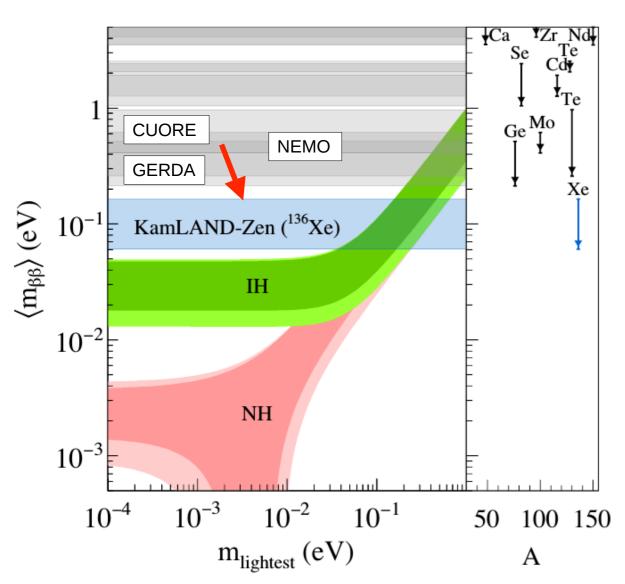




• Ton-scale $0\nu\beta\beta$ searches will probe LNV from a variety of mechanisms



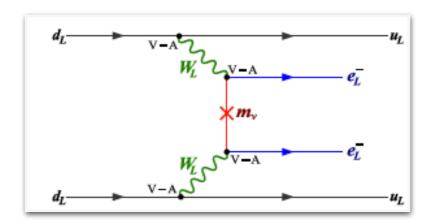
• Ton-scale $0\nu\beta\beta$ searches will probe LNV from a variety of mechanisms



KamLAND-Zen coll., '16

LNV dynamics at M >> TeV:

leaves as the only low-energy footprint
light Majorana neutrino



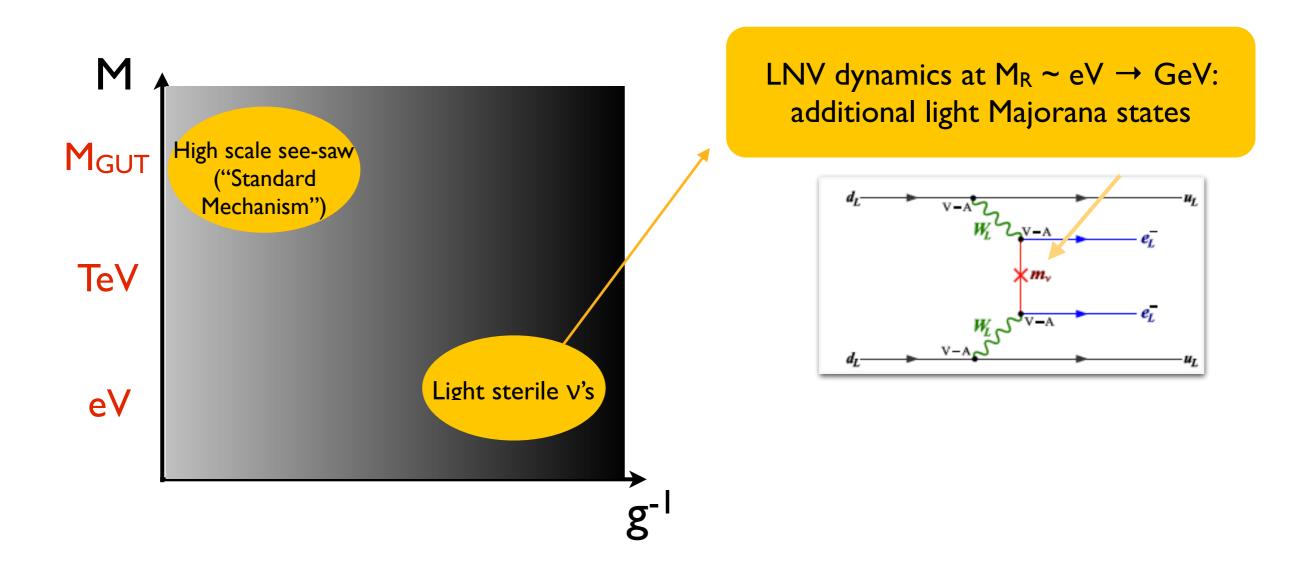
$$A \propto m_{\beta\beta} \equiv \sum_{i} U_{ei}^{2} m_{i}$$

Clear interpretation framework and sensitivity goals ("inverted hierarchy").

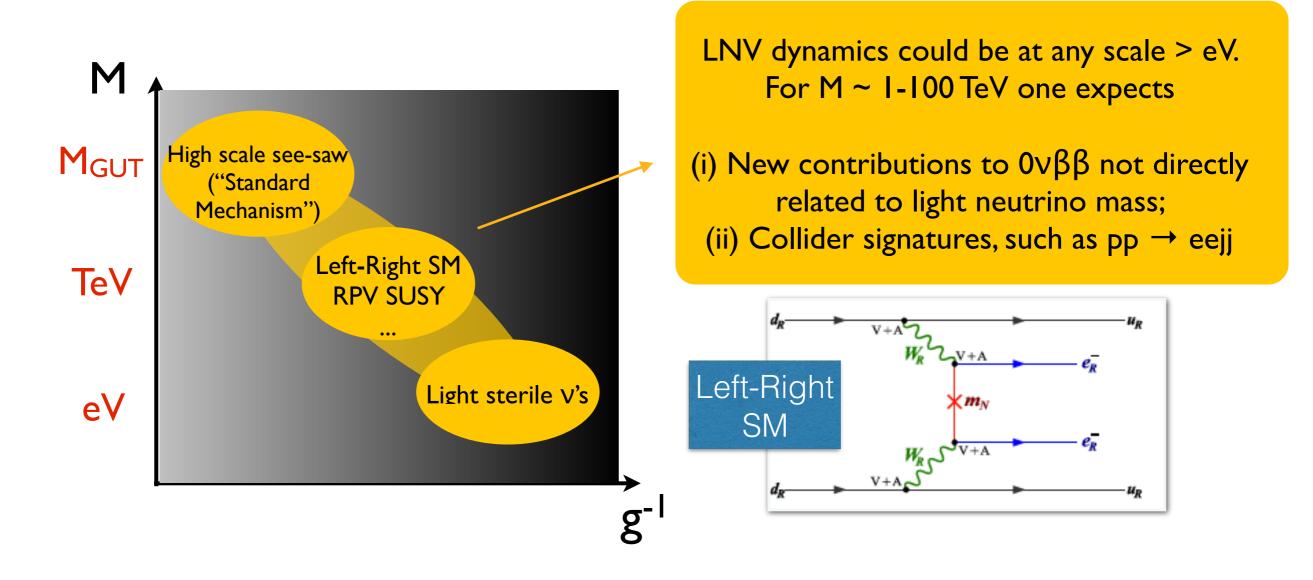
Requires difficult nuclear matrix elements: 30-50% uncertainty (spread)

But only limited class of models!

• Ton-scale $0V\beta\beta$ searches will probe LNV from a variety of mechanisms



• Ton-scale $0\nu\beta\beta$ searches will probe LNV from a variety of mechanisms



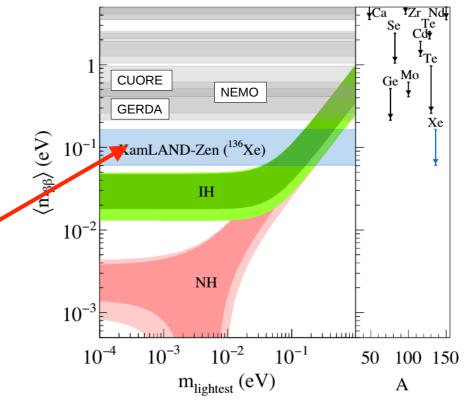
Discovery potential and interpretation of null results depend on a different set of (equally uncertain) hadronic and nuclear matrix elements

Effective theory framework

• Impact of $0\nu\beta\beta$ searches most efficiently analyzed in EFT framework:

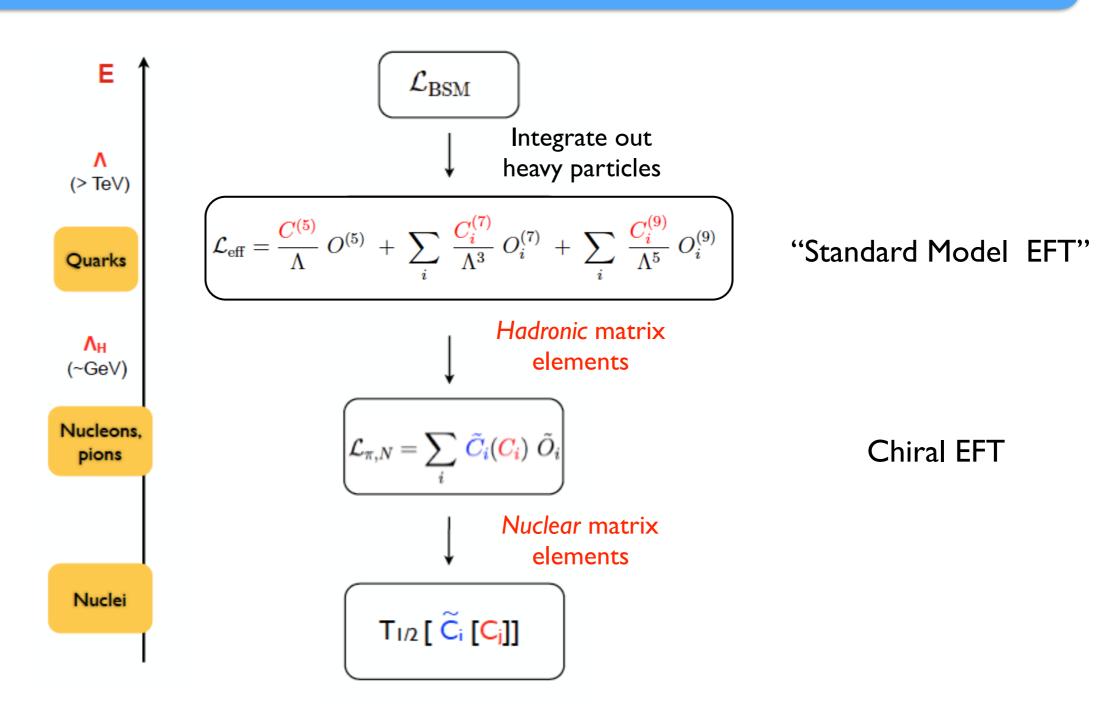
I. Systematically classify sources of Lepton Number Violation and relate $0v\beta\beta$ to other LNV processes (such as pp \rightarrow eejj at the LHC)

Organize contributions to hadronic and nuclear matrix elements
 ⇒ "controllable" uncertainties



KamLAND-Zen coll., '16

Effective theory framework



Chain of EFTs + hadronic & nuclear matrix elements

$$T_{1/2} \left[\stackrel{\sim}{C}_i \left[\stackrel{\sim}{C}_j \right] \right]$$

High-scale effective Lagrangian

• $\Delta L=2$ operators appear at dim = 5, 7, 9, ...

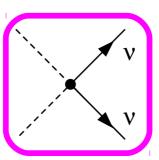
$$\mathcal{L}_{\text{eff}}^{\Delta L=2} = \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(7)}}{\Lambda^{3}} O_{i}^{(7)} + \sum_{i} \frac{C_{i}^{(9)}}{\Lambda^{5}} O_{i}^{(9)} + \dots$$

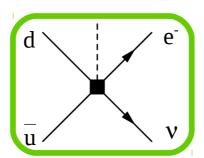
- One operator
- Twelve operators
- Eleven 6-fermion operators

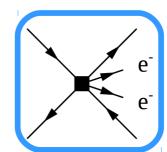
Weinberg 1979

Lehman 1410.4193

Graesser 1606.04549







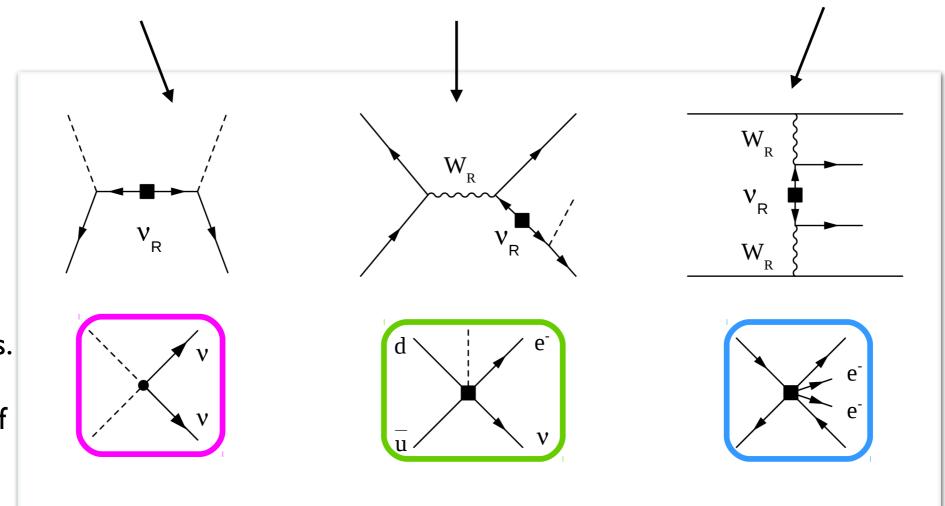
High-scale effective Lagrangian

• $\Delta L=2$ operators appear at dim = 5, 7, 9, ...

$$\mathcal{L}_{\text{eff}}^{\Delta L=2} = \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(7)}}{\Lambda^{3}} O_{i}^{(7)} + \sum_{i} \frac{C_{i}^{(9)}}{\Lambda^{5}} O_{i}^{(9)} + \dots$$

Model realization: Left-Right SM

For A~ TeVs, higher dim. ops. compete due to smallness of Yukawa couplings



Systematic "unpacking"

Babu-Leung hep-ph/ 0106054

Bonnet et al 1212.3045

Helo et al 1602.03362

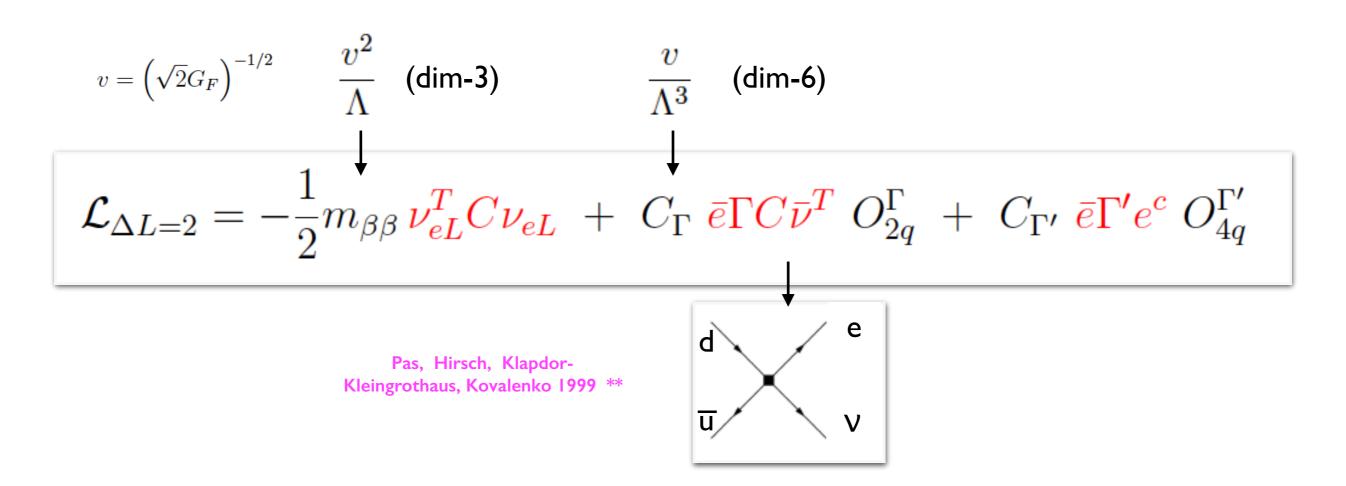
GeV-scale effective Lagrangian

• When the dust settles, get three classes of $\Delta L=2$ operators

$$v = \left(\sqrt{2}G_F\right)^{-1/2}$$
 $\stackrel{v^2}{\Lambda}$ (dim-3)
$$\mathcal{L}_{\Delta L=2} = -\frac{1}{2} m_{eta eta} \stackrel{T}{\nu_{eL}} C
u_{eL} + C_{\Gamma} \bar{e} \Gamma C \bar{
u}^T O_{2q}^{\Gamma} + C_{\Gamma'} \bar{e} \Gamma' e^c O_{4q}^{\Gamma'}$$

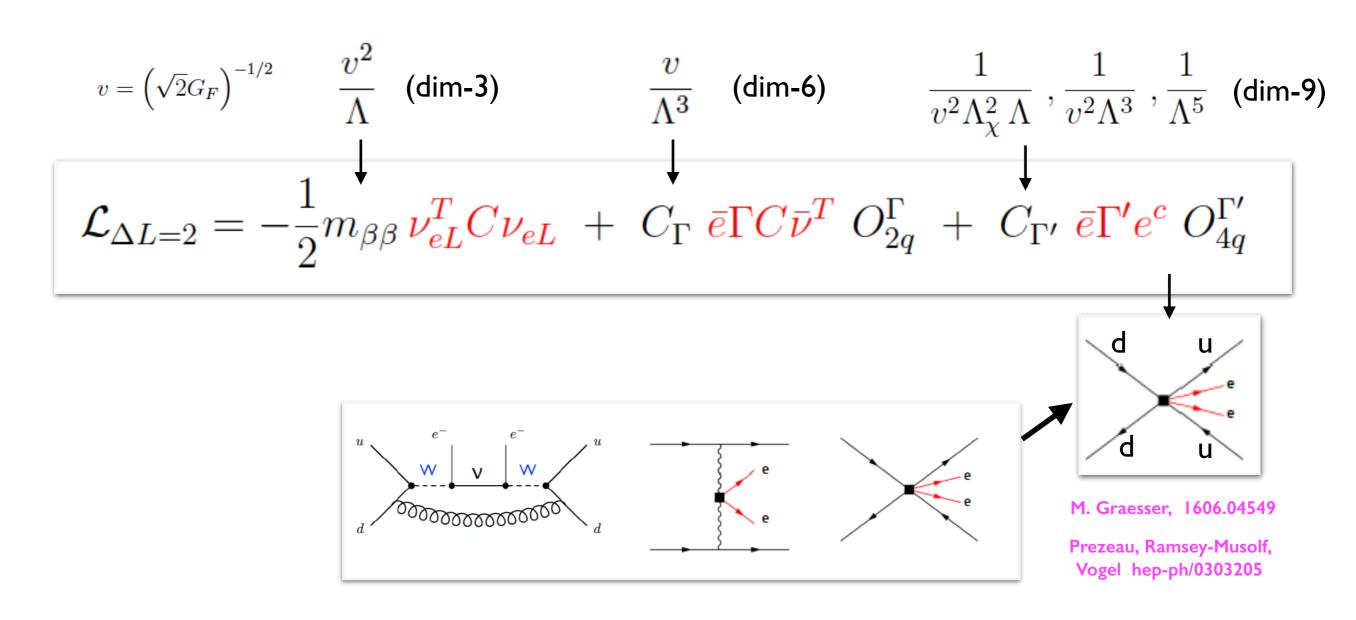
GeV-scale effective Lagrangian

• When the dust settles, get three classes of $\Delta L=2$ operators



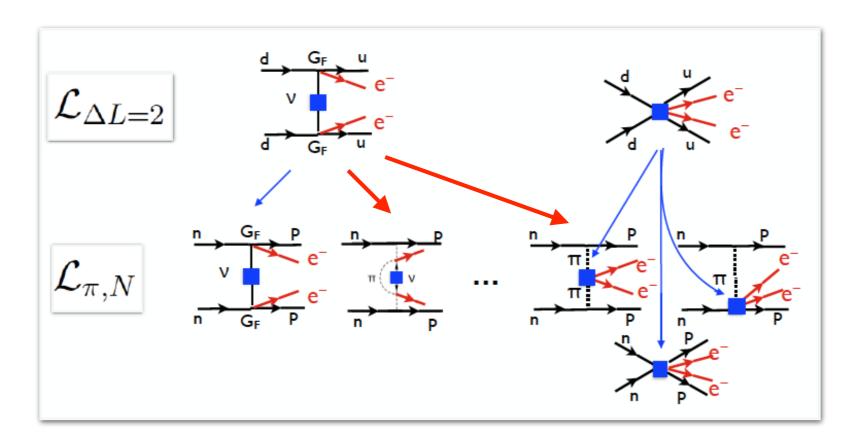
GeV-scale effective Lagrangian

• When the dust settles, get three classes of $\Delta L=2$ operators



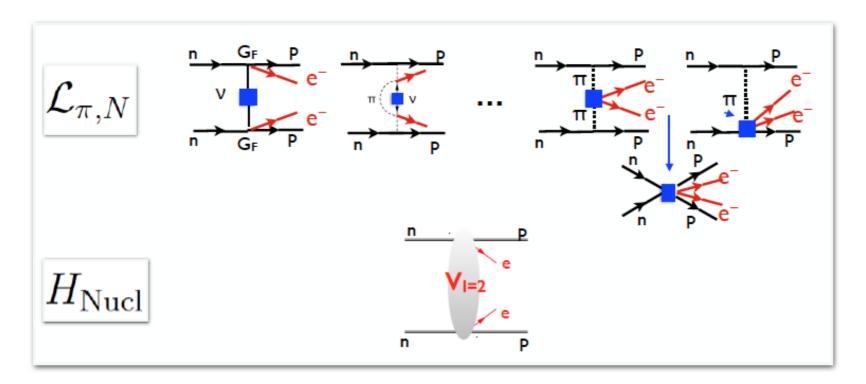
From quarks to hadrons

• At E ~ Λ_X ~ m_N ~ GeV map $\Delta L=2$ Lagrangian onto π , N operators, organized according to power-counting in Q/Λ_X (Q ~ k_F ~ m_π)



- * This step is equivalent to "integrating out" hard neutrinos and gluons $(E, |\mathbf{p}| > \Lambda_X)$
- * $\mathcal{L}_{\pi,N}$ involves hadronic operators with same chiral transformation properties as $\mathcal{L}_{\Delta L=2}$
- * Low Energy Constants can be determined by appropriate hadronic matrix elements

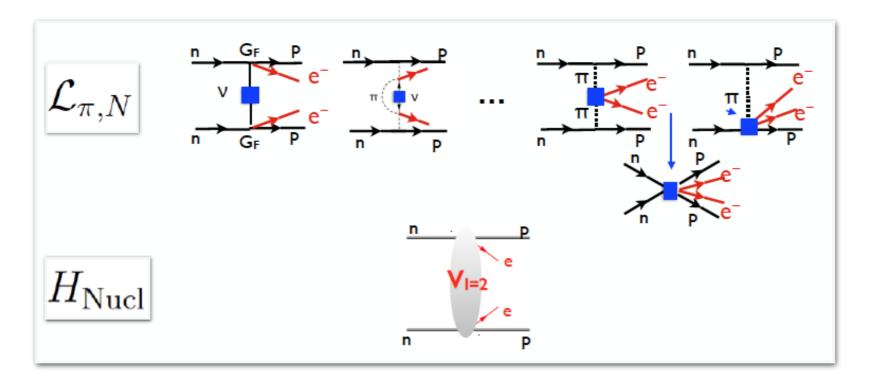
• Integrate out V's and π 's with $(E,|p|)\sim Q$ and $(E,|p|)\sim (Q^2/m_N,Q)$



Strong interactions

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \, \bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \, \bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 \, \bar{e}_L e_L^c \, V_{I=2}^c$$

• Integrate out V's and π 's with $(E,|p|)\sim Q$ and $(E,|p|)\sim (Q^2/m_N,Q)$

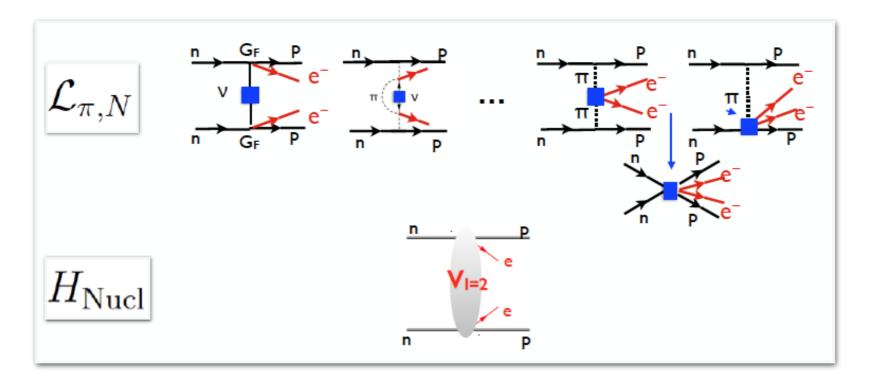


Strong interactions

"Ultra-soft" (e, v) with $|\mathbf{p}|$, $E << k_F$ cannot be integrated out

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \,\bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \,\bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 \,\bar{e}_L e_L^c \,V_{I=2}^c$$

• Integrate out V's and π 's with $(E,|p|)\sim Q$ and $(E,|p|)\sim (Q^2/m_N,Q)$



Strong interactions

"Ultra-soft" (e, v) with $|\mathbf{p}|$, $E << k_F$ cannot be integrated out

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \,\bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \,\bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 \,\bar{e}_L e_L^c \, V_{I=2}^{I=2}$$

"Isotensor" $0\nu\beta\beta$ potential mediates $nn \rightarrow pp$.

It can be identified to a given order in Q/Λ_X by computing 2-nucleon irreducible diagrams

• Integrate out V's and π 's with $(E,|p|)\sim Q$ and $(E,|p|)\sim (Q^2/m_N,Q)$

$$\mathcal{L}_{\pi,N}$$
 $\mathcal{L}_{\pi,N}$ $\mathcal{L$

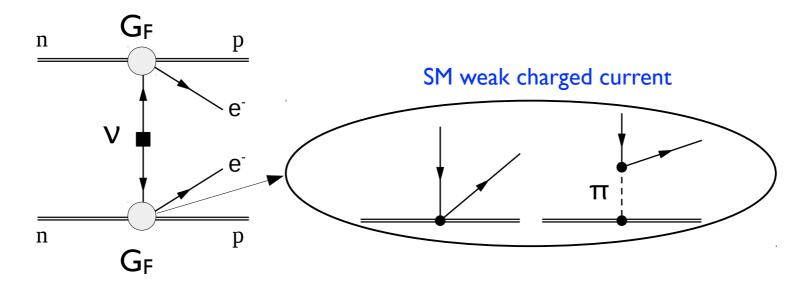
$$H_{\rm Nucl} = H_0 + \sqrt{2} G_F V_{ud} \, \bar{N} \left(g_V \delta^{\mu 0} - g_A \delta^{\mu i} \sigma^i \right) \tau^+ N \, \bar{e}_L \gamma_\mu \nu_L + 2 G_F^2 V_{ud}^2 \, \bar{e}_L e_L^c \, V_{I=2}^{}$$

$$V_{I=2} = m_{\beta\beta} V_{\nu} + \frac{m_{\pi}^2}{v} (c_{\pi\pi} V_{\pi\pi} + c_{\pi N} V_{\pi N} + c_{NN} V_{NN}) + \dots$$

0νββ from light Majorana neutrino exchange

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

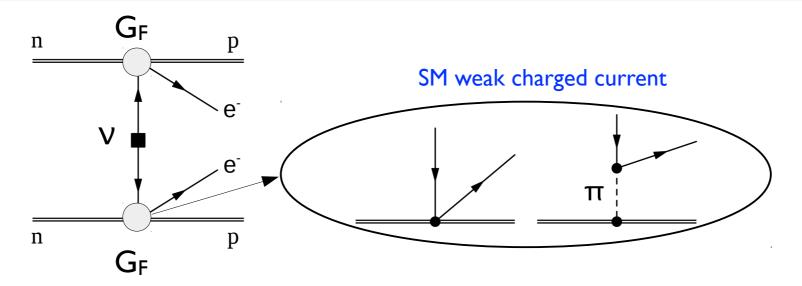
V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti, S. Pastore, J. de Vries, U. van Kolck (in preparation)



Leading Order:

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+} \underbrace{\frac{1}{\mathbf{q}^2}} \left\{ 1 - g_A^2 \left[\boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} - \boldsymbol{\sigma}^{(a)} \cdot \mathbf{q} \; \boldsymbol{\sigma}^{(b)} \cdot \mathbf{q} \; \frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2} \right] \right\}$$

Hadronic input is gA

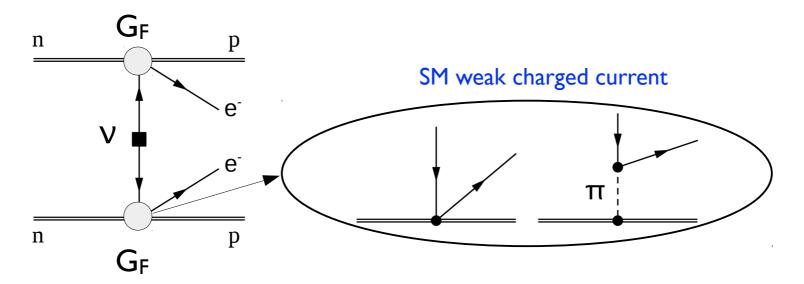


Leading Order:

$$V_{\nu,0}^{(a,b)} = \tau^{(a)} + \tau^{(b)} + \underbrace{\frac{1}{\mathbf{q}^2}} \left\{ 1 - g_A^2 \left[\boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} - \boldsymbol{\sigma}^{(a)} \cdot \mathbf{q} \, \boldsymbol{\sigma}^{(b)} \cdot \mathbf{q} \, \frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2} \right] \right\}$$

Hadronic input is gA

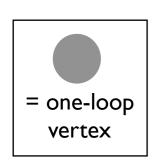
Assume for the moment Weinberg counting for contact 4N interactions $(1/\Lambda_X^2)$

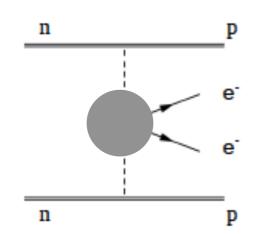


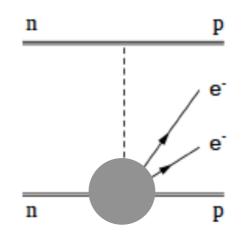
N²LO:

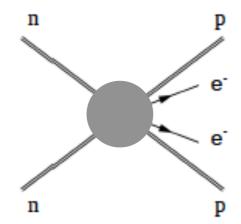
$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+} \underbrace{\frac{1}{\mathbf{q}^2}} \left\{ 1 - g_A^2 \left[\boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} - \boldsymbol{\sigma}^{(a)} \cdot \mathbf{q} \, \boldsymbol{\sigma}^{(b)} \cdot \mathbf{q} \, \frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2} \right] \right\}$$

I. Corrections to I-body currents (radii, magnetic moments, ...) usually taken into account via nucleon form factors







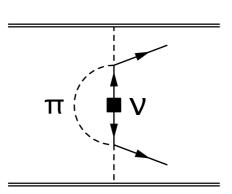


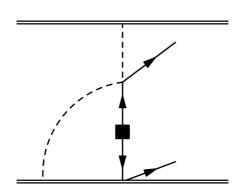
• N²LO:

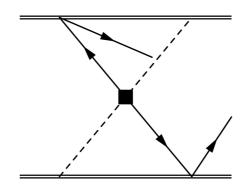
$$V_{
u,2}^{(a,b)} = au^{(a)+} au^{(b)+} \left(\mathcal{V}_{VV}^{(a,b)} + \mathcal{V}_{AA}^{(a,b)} + \tilde{\mathcal{V}}_{AA}^{(a,b)} \, \log rac{m_{\pi}^2}{\mu_{
m us}^2} + \mathcal{V}_{CT}^{(a,b)}
ight)$$

- I. Corrections to I-body currents (radii, magnetic moments, ...) usually taken into account via nucleon form factors
- 2. Pion loops & local interactions: new, non-factorizable piece

Representative loop diagrams







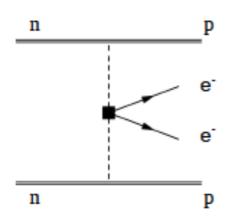
• N²LO:

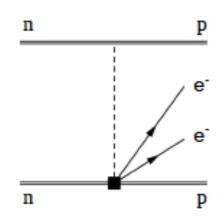
$$V_{
u,2}^{(a,b)} = au^{(a)+} au^{(b)+} \left(\mathcal{V}_{VV}^{(a,b)} + \mathcal{V}_{AA}^{(a,b)} + \tilde{\mathcal{V}}_{AA}^{(a,b)} \, \log rac{m_{\pi}^2}{\mu_{
m us}^2} + \mathcal{V}_{CT}^{(a,b)}
ight)$$

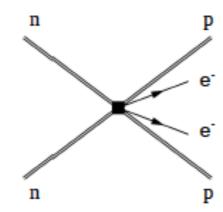
$$\mathcal{V}_{VV}^{(a,b)} = -\frac{g_A^2}{(4\pi F_\pi)^2} \frac{\boldsymbol{\sigma}^{(a)} \cdot \mathbf{q} \, \boldsymbol{\sigma}^{(b)} \cdot \mathbf{q}}{m_\pi^2} \times \left\{ \frac{2(1-\hat{q})^2}{\hat{q}^2(1+\hat{q})} \log\left(1+\hat{q}\right) - \frac{2}{\hat{q}} + \frac{7-3\hat{q}L_\pi}{(1+\hat{q})^2} + \frac{L_\pi}{1+\hat{q}} \right\}$$

$$\hat{q} = -q^2/m_\pi^2$$
 $L_\pi = \log \frac{\mu^2}{m_\pi^2}$.

Counterterm diagrams







• N²LO:

$$V_{
u,2}^{(a,b)} = au^{(a)+} au^{(b)+} \left(\mathcal{V}_{VV}^{(a,b)} + \mathcal{V}_{AA}^{(a,b)} + \tilde{\mathcal{V}}_{AA}^{(a,b)} \, \log rac{m_{\pi}^2}{\mu_{\mathrm{us}}^2} + \mathcal{V}_{CT}^{(a,b)}
ight)$$

• Loops are UV divergent: need LECs encoding physics at E $\approx \mu$

$$\mathcal{V}_{CT}^{(a,b)} = \frac{g_A^2}{(4\pi F_\pi)^2} \frac{\boldsymbol{\sigma}^{(a)} \cdot \vec{q} \, \boldsymbol{\sigma}^{(b)} \cdot \vec{q}}{m_\pi^2} \left[\frac{5}{6} g_\nu^{\pi\pi} \frac{\hat{q}}{(1+\hat{q})^2} - g_\nu^{\pi N} \frac{1}{1+\hat{q}} \right] - g_\nu \, \mathbf{1}^{(a)} \times \mathbf{1}^{(b)}$$

Scaling of contact 4N operators

- We know that Weinberg counting is not consistent for NN scattering
- m_{π} dependence of short-range nuclear force should be N²LO

$$\mathcal{L} = -\frac{C}{N} \bar{N} N \bar{N} N - \frac{m_{\pi}^2}{(4\pi F_{\pi})^2} \frac{D_2}{D_2} \bar{N} N \bar{N} N$$
 $C, D_2 \sim 1/F_{\pi}^2$

Scaling of contact 4N operators

- We know that Weinberg counting is not consistent for NN scattering
- m_{π} dependence of short-range nuclear force should be N²LO

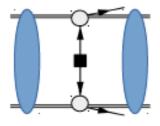
$$\mathcal{L} = -\frac{C}{N} \bar{N} N \bar{N} N - \frac{m_{\pi}^2}{(4\pi F_{\pi})^2} D_2 \bar{N} N \bar{N} N$$
 $C, D_2 \sim 1/F_{\pi}^2$

But UV divergence of the LO amplitude requires promoting it to LO!

Kaplan-Savage-Wise nucl-th/9605002

Study UV divergences in nn→ppee amplitude, with LO strong potential

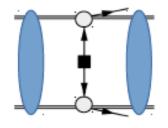
$$V_{\text{strong}}(r) = \tilde{C} \, \delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$



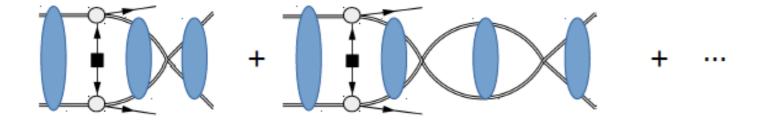
finite

Study UV divergences in nn→ppee amplitude, with LO strong potential

$$V_{\text{strong}}(r) = \tilde{C} \, \delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$



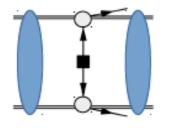
finite



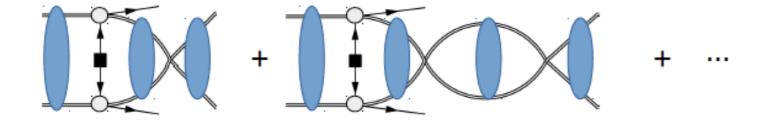
finite

Study UV divergences in nn→ppee amplitude, with LO strong potential

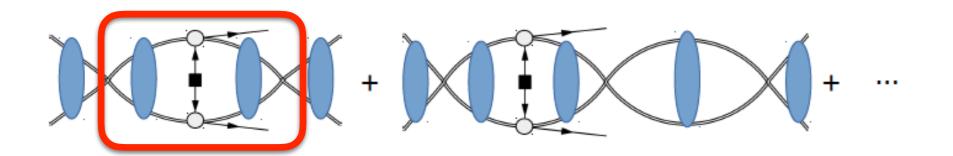
$$V_{\text{strong}}(r) = \tilde{C} \, \delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$



finite



finite

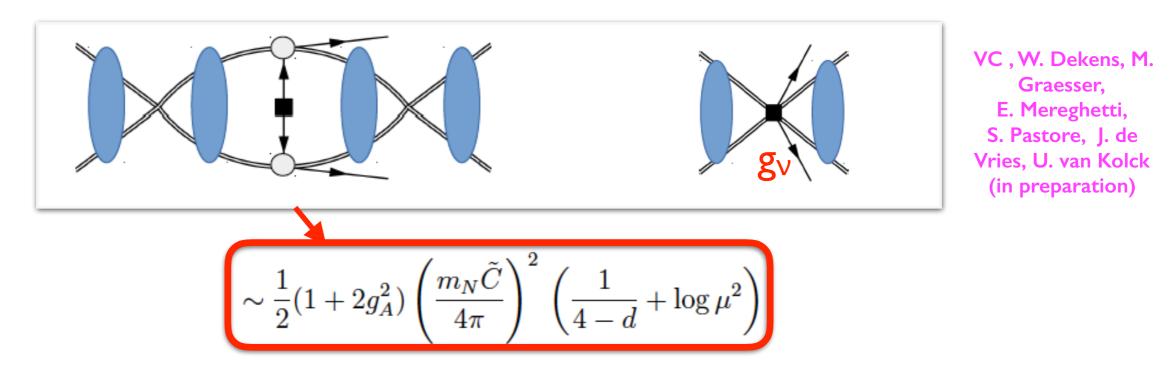


2-loop diagram is UV divergent!

Study UV divergences in nn→ppee amplitude, with LO strong potential

$$V_{\text{strong}}(r) = \tilde{C} \, \delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$

Renormalization requires contact LNV operator at LO!



• The coupling scales as $g_V \sim 1/F_{\pi^2} >> 1/(4\pi F_{\pi})^2$, same order as $1/q^2$ from tree-level neutrino exchange

If you don't like Feynman diagrams...

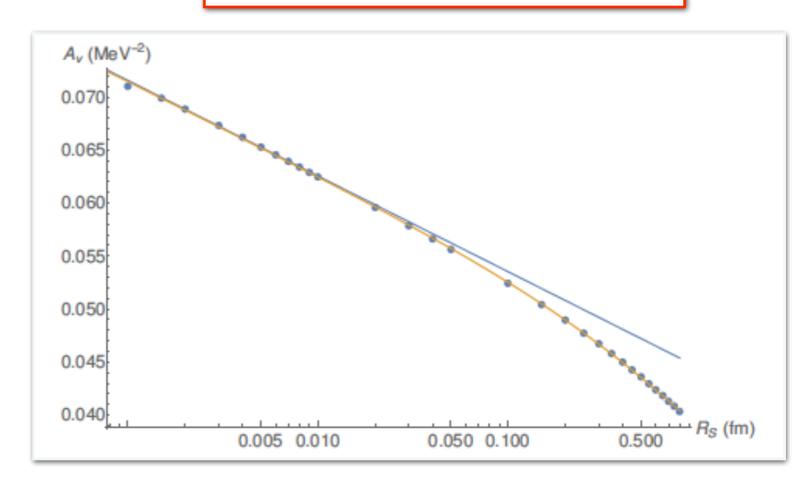
- Same conclusion obtained by solving the Schroedinger equation
 - Use smeared delta function to regulate short range strong potential

$$\delta^{(3)}(\mathbf{r}) \to \frac{1}{\pi^{3/2} R_S^3} e^{-\frac{r^2}{R_S^2}}$$

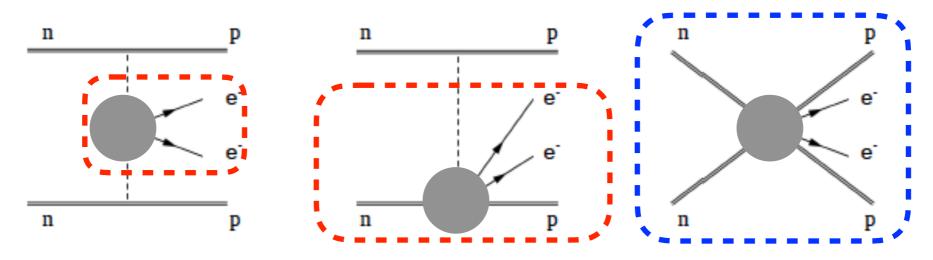
Compute amplitude

$$\mathcal{A}_{\nu} = \int d^3\mathbf{r}\psi_{\mathbf{p'}}^{-}(\mathbf{r})V_{\nu}(\mathbf{r})\psi_{\mathbf{p}}^{+}(\mathbf{r})$$

• Logarithmic dependence on $R_S \Rightarrow$ need LO counterterm $g_V \sim I/F_{\pi}^2 \log R_S$ to obtain physical, regulatorindependent result



Estimating the LECs (I)

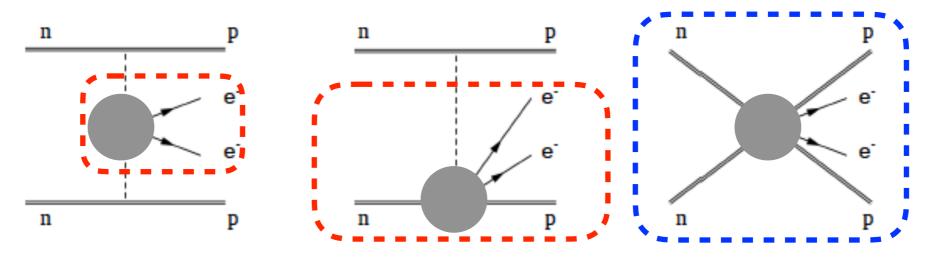


V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

- LECs can be fixed by matching χEFT to lattice QCD calculation
- Need to calculate matrix elements of a non-local effective action

$$S_{\text{eff}}^{\Delta L=2} = \frac{8G_F^2 V_{ud}^2 m_{\beta\beta}}{2!} \int d^4x d^4y \ S(x-y) \times \bar{e}_L(x) \gamma^\mu \gamma^\nu e_L^c(y) \times T\Big(\bar{u}_L \gamma_\mu d_L(x) \ \bar{u}_L \gamma_\mu d_L(y)\Big)$$

Scalar massless propagator



V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

LECs can be fixed by matching χEFT to lattice QCD calculation

$$<\pi^+|\mathbf{S}_{\rm NL}|\pi^-> <\mathbf{p}\pi^+|\mathbf{S}_{\rm NL}|n> <\mathbf{p}p|\mathbf{S}_{\rm NL}|n>$$

$$S_{\rm NL} = \int dx\,dy\,\,S_{\nu}(x-y)\,\,T\left(J_{\alpha}^+(x)\,J_{\beta}^+(y)\right)\,g^{\alpha\beta}$$

$$\mathbf{S}_{\rm Calar\ massless\ propagator} \qquad J_{\alpha}^+ = \bar{u}_L\gamma_{\alpha}d_L$$

• LECs can be fixed by relating them to EM LECs (hard γ exchange)

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

$$\langle e_{1}e_{2}h_{f}|S_{\text{eff}}^{\Delta L=2}|h_{i}\rangle = \frac{8G_{F}^{2}V_{ud}^{2}m_{\beta\beta}}{2!} \int d^{4}x \ \langle e_{1}e_{2}|\bar{e}_{L}(x)e_{L}^{c}(x)|0\rangle \int \frac{d^{4}k}{(2\pi)^{4}} \frac{g^{\mu\nu}\hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^{2}+i\epsilon} ,$$

$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^{4}r \, e^{ik\cdot r} \ \langle h_{f}|T(\bar{u}_{L}\gamma_{\mu}d_{L}(x+r/2) \ \bar{u}_{L}\gamma_{\mu}d_{L}(x-r/2))|h_{i}\rangle .$$

• LECs can be fixed by relating them to EM LECs (hard γ exchange)

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

$$\langle e_{1}e_{2}h_{f}|S_{\text{eff}}^{\Delta L=2}|h_{i}\rangle = \frac{8G_{F}^{2}V_{ud}^{2}m_{\beta\beta}}{2!} \int d^{4}x \ \langle e_{1}e_{2}|\bar{e}_{L}(x)e_{L}^{c}(x)|0\rangle \int \frac{d^{4}k}{(2\pi)^{4}} \frac{g^{\mu\nu}\hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^{2}+i\epsilon},$$

$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^{4}r \, e^{ik\cdot r} \ \langle h_{f}|T(\bar{u}_{L}\gamma_{\mu}d_{L}(x+r/2) \ \bar{u}_{L}\gamma_{\mu}d_{L}(x-r/2))|h_{i}\rangle .$$

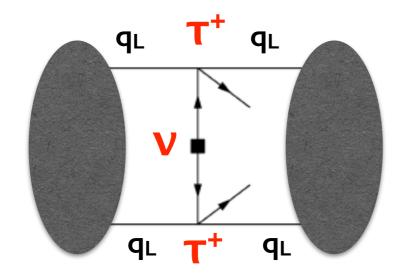
- Neutrino propagator ⇔ γ propagator in Feynman gauge
- $\Delta L=2$ amplitude related by chiral symmetry to I=2 component of electromagnetic amplitude ($J_{EM} \times J_{EM}$)

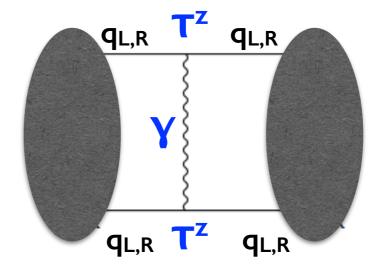
• LECs can be fixed by relating them to EM LECs (hard γ exchange)

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

$$\langle e_{1}e_{2}h_{f}|S_{\text{eff}}^{\Delta L=2}|h_{i}\rangle = \frac{8G_{F}^{2}V_{ud}^{2}m_{\beta\beta}}{2!} \int d^{4}x \ \langle e_{1}e_{2}|\bar{e}_{L}(x)e_{L}^{c}(x)|0\rangle \int \frac{d^{4}k}{(2\pi)^{4}} \frac{g^{\mu\nu}\hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^{2}+i\epsilon},$$

$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^{4}r \, e^{ik\cdot r} \ \langle h_{f}|T(\bar{u}_{L}\gamma_{\mu}d_{L}(x+r/2) \ \bar{u}_{L}\gamma_{\mu}d_{L}(x-r/2))|h_{i}\rangle .$$





LECs can be fixed by relating them to EM LECs (hard γ exchange)

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

$$\langle e_{1}e_{2}h_{f}|S_{\text{eff}}^{\Delta L=2}|h_{i}\rangle = \frac{8G_{F}^{2}V_{ud}^{2}m_{\beta\beta}}{2!} \int d^{4}x \ \langle e_{1}e_{2}|\bar{e}_{L}(x)e_{L}^{c}(x)|0\rangle \int \frac{d^{4}k}{(2\pi)^{4}} \frac{g^{\mu\nu}\hat{\Pi}_{\mu\nu}^{++}(k,x)}{k^{2}+i\epsilon} ,$$

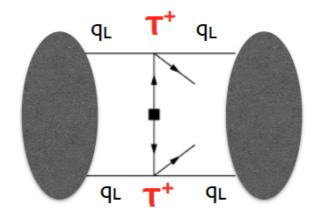
$$\hat{\Pi}_{\mu\nu}^{++}(k,x) = \int d^{4}r \, e^{ik\cdot r} \ \langle h_{f}|T\Big(\bar{u}_{L}\gamma_{\mu}d_{L}(x+r/2) \ \bar{u}_{L}\gamma_{\mu}d_{L}(x-r/2)\Big)|h_{i}\rangle .$$

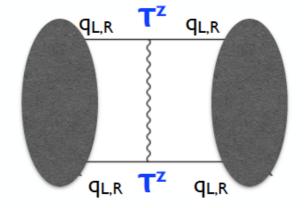
Estimates for mesonic (ππ) LECs exist!

Ananthanarayan & Moussallam hep-ph/0405206

- Little is known about the πNN coupling
- What about the enhanced 4N couplings?

0νββ vs EM isospin breaking





Two I=2 operators involving four nucleons

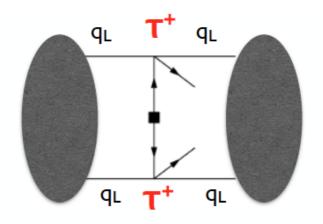
$$Q_L = \frac{\tau^z}{2}, Q_R = \frac{\tau^z}{2}$$

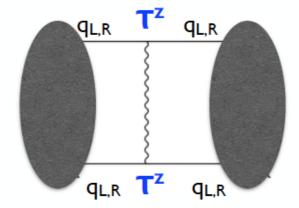
$$\begin{array}{c} \operatorname{\mathsf{EM}} \operatorname{\mathsf{case}} \\ Q_L = \frac{\tau^z}{2}, \, Q_R = \frac{\tau^z}{2} \\ e^2 C_1 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_L N - \frac{\operatorname{\mathsf{Tr}}[\mathcal{Q}_L^2]}{6} \bar{N} \boldsymbol{\tau} N \cdot \bar{N} \boldsymbol{\tau} N + L \to R \right) \\ e^2 C_2 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_R N - \frac{\operatorname{\mathsf{Tr}}[\mathcal{Q}_L \mathcal{Q}_R]}{6} \bar{N} \boldsymbol{\tau} N \cdot \bar{N} \boldsymbol{\tau} N + L \to R \right) \\ \end{array} \quad \begin{array}{c} \mathcal{Q}_L = u^\dagger \mathcal{Q}_L u \\ \mathcal{Q}_R = u \mathcal{Q}_R u^\dagger \\ u = 1 + \frac{i \boldsymbol{\pi} \cdot \boldsymbol{\tau}}{2F_\pi} + \dots \end{array}$$

$$Q_L = u^{\dagger} Q_L u$$

 $Q_R = u Q_R u^{\dagger}$
 $= 1 + \frac{i\pi \cdot \tau}{2F_{\pi}} + \dots$

0νββ vs EM isospin breaking





Two I=2 operators involving four nucleons

$$Q_L=\frac{\tau^z}{2}, Q_R=\frac{\tau^z}{2}$$

$$\underbrace{ \begin{array}{l} \text{EM case} \\ Q_L = \frac{\tau^z}{2}, \, Q_R = \frac{\tau^z}{2} \end{array} }_{} e^2 \underbrace{ \begin{array}{l} e^2 C_1 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_L N - \frac{\text{Tr}[\mathcal{Q}_L^2]}{6} \bar{N} \boldsymbol{\tau} N \cdot \bar{N} \boldsymbol{\tau} N + L \rightarrow R \right) \\ e^2 C_2 \left(\bar{N} \mathcal{Q}_L N \bar{N} \mathcal{Q}_R N - \frac{\text{Tr}[\mathcal{Q}_L \mathcal{Q}_R]}{6} \bar{N} \boldsymbol{\tau} N \cdot \bar{N} \boldsymbol{\tau} N + L \rightarrow R \right) \\ \end{array} }_{} \underbrace{ \begin{array}{l} \mathcal{Q}_L = u^\dagger \mathcal{Q}_L u \\ \mathcal{Q}_R = u \mathcal{Q}_R u^\dagger \\ u = 1 + \frac{i \boldsymbol{\pi} \cdot \boldsymbol{\tau}}{2F_\pi} + \dots \end{array} }_{}$$

$$Q_L = u^{\dagger} Q_L u$$

$$Q_R = u Q_R u^{\dagger}$$

$$= 1 + \frac{i\pi \cdot \tau}{2F_{\pi}} + \dots$$

$$\Delta L=2$$
 case

$$Q_L = \tau^+, Q_R = 0$$

$$Q_{L} = \tau^{+}, Q_{R} = 0 \qquad 8G_{F}^{2}V_{ud}^{2}m_{\beta\beta}\bar{e}_{L}e_{L}^{c} g_{\nu} \left(\bar{N}Q_{L}N\bar{N}Q_{L}N - \frac{\text{Tr}[Q_{L}^{2}]}{6}\bar{N}\tau N \cdot \bar{N}\tau N + L \rightarrow R\right)$$

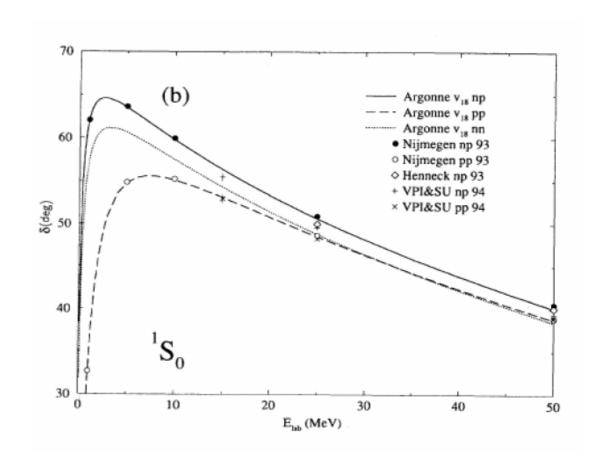
• Chiral symmetry $\Rightarrow g_V = C_I$

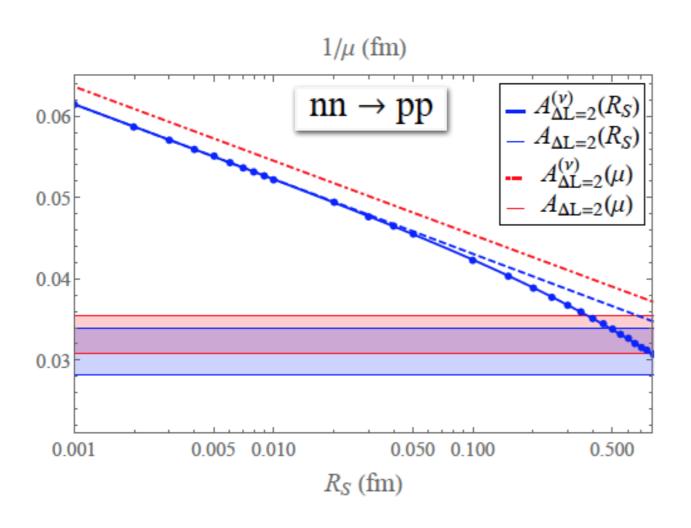
0νββ vs EM isospin breaking

• NN observables cannot disentangle C_1 from C_2 (need pions), but provide data-based estimate of g_V if $C_1 \sim C_2$

- $C_1 + C_2$ controls IB combination of ${}^{1}S_0$ scattering lengths $a_{nn} + a_{pp} 2 a_{np}$
- Fit to data, including Coulomb potential, pion EM mass splitting, and contact terms confirms that

$$C_1 + C_2 \sim 1/F_{\pi^2} >> 1/(4\pi F_{\pi})^2$$

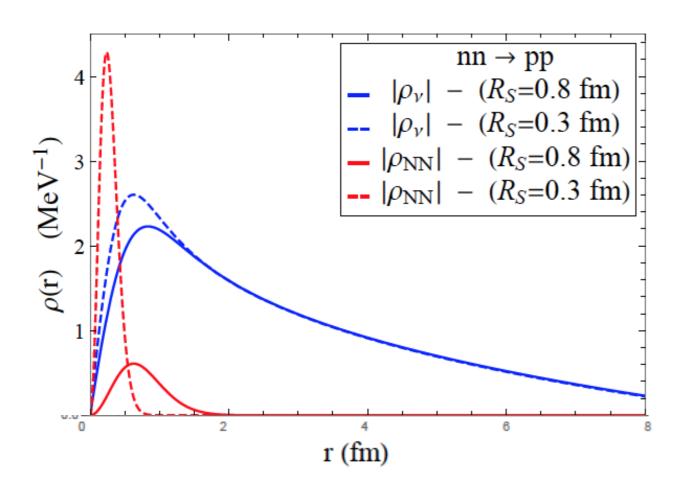




- Assume $g_V = (C_1 + C_2)/2$ at some scale R_S between 0.02 and 0.8 fm, with $C_1 + C_2$ fit to NN data
- $A_{NN}+A_{V}$ is R_{S} (or μ) independent
- $A_{NN}/A_{v} \sim 10\%$ (30%) at $R_{S}\sim 0.8$ fm (0.3 fm) **
- ** Actual correction might be different because $C_1 \neq C_2$

$$A = \int dr \ \rho(r)$$

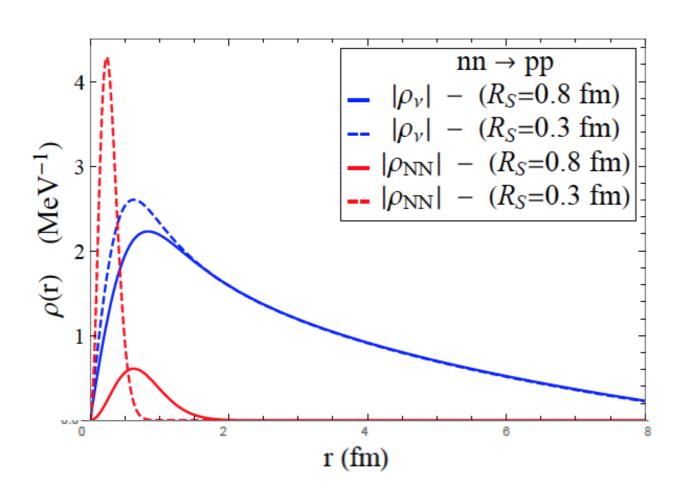
$$nn \rightarrow pp \mid \Delta I=0$$



 Anatomy of this result: look at "matrix-element density" as function of inter-nucleon distance

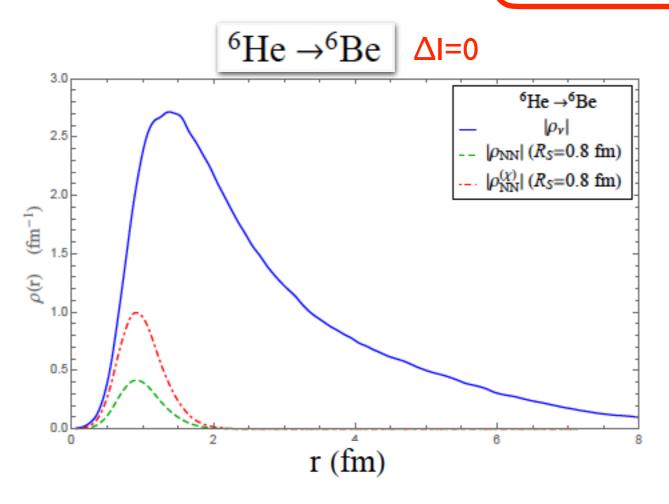
$$A = \int dr \ \rho(r)$$

$$nn \rightarrow pp \mid \Delta I=0$$



- Anatomy of this result: look at "matrix-element density" as function of inter-nucleon distance
- What about nuclei?
- We explored the impact on light nuclei with wavefunctions obtained via Variational Monte Carlo from AV18 (NN) + U9 (NNN) potentials

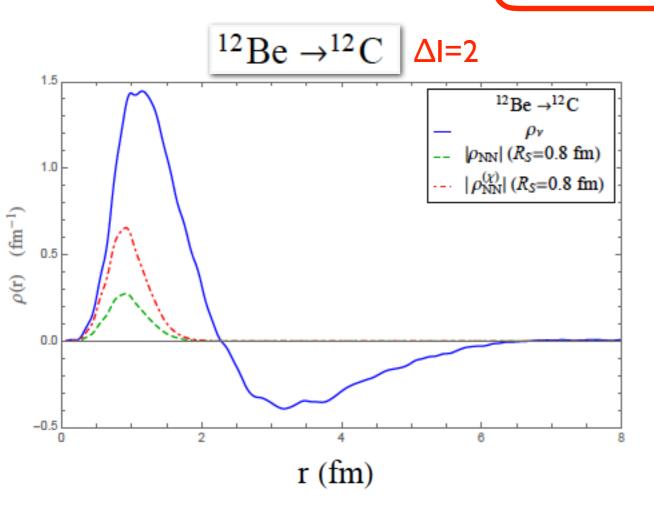
$$A = \int dr \ \rho(r)$$



For ∆I=0 transitions situation is similar to nn→pp case

- Hybrid calculation at this stage: can't expect R_S-independence
- $g_v \sim (C_1 + C_2)/2$ taken from fit to NN data (ours vs Piarulli et al. 1606.06335)

$$A = \int dr \ \rho(r)$$



 g_{V} contribution sizable in $\Delta I=2$ transition (due to node): for A=12, $A_{NN}/A_{V}=25\%$ -55%

Transitions of experimental interest (76 Ge \rightarrow 76 Se, ...) have $\Delta I=2$ \Rightarrow m_{\beta\beta} phenomenology can be significantly affected!

0νββ amplitude summary

Figure adapted from Primakoff-Rosen 1969

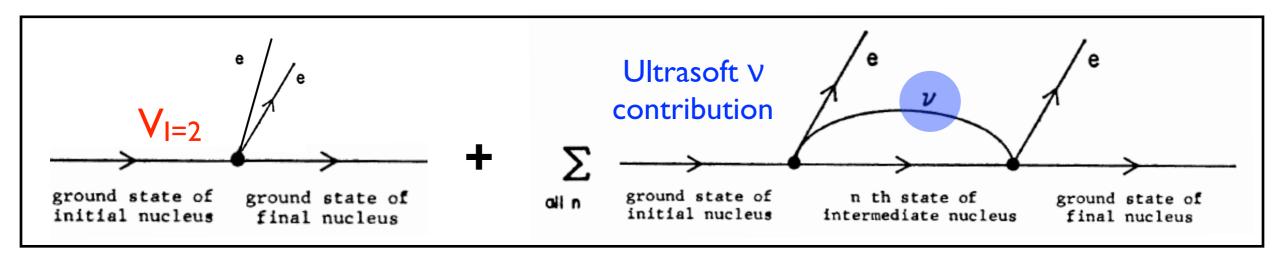


• Leading amplitude controlled by ground state matrix element of $V_{v,0}$

New short range contribution

0νββ amplitude summary

Figure adapted from Primakoff-Rosen 1969



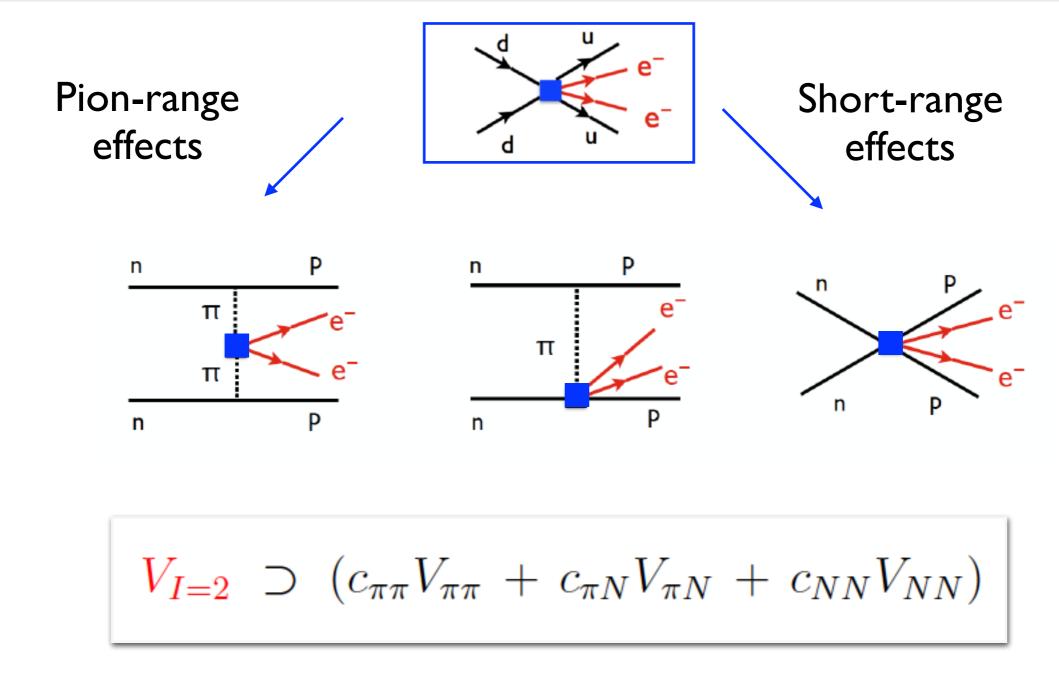
N2LO amplitude:

- Factorizable corrections to I-body currents (radii,, ...)
- Ground state matrix element of $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_{\pi})^2$ (involving new non-factorizable effects)
- Ultrasoft neutrino contribution suppressed by $(E_n E_i)/(4\pi k_F)$

0Vββ from short distance mechanisms

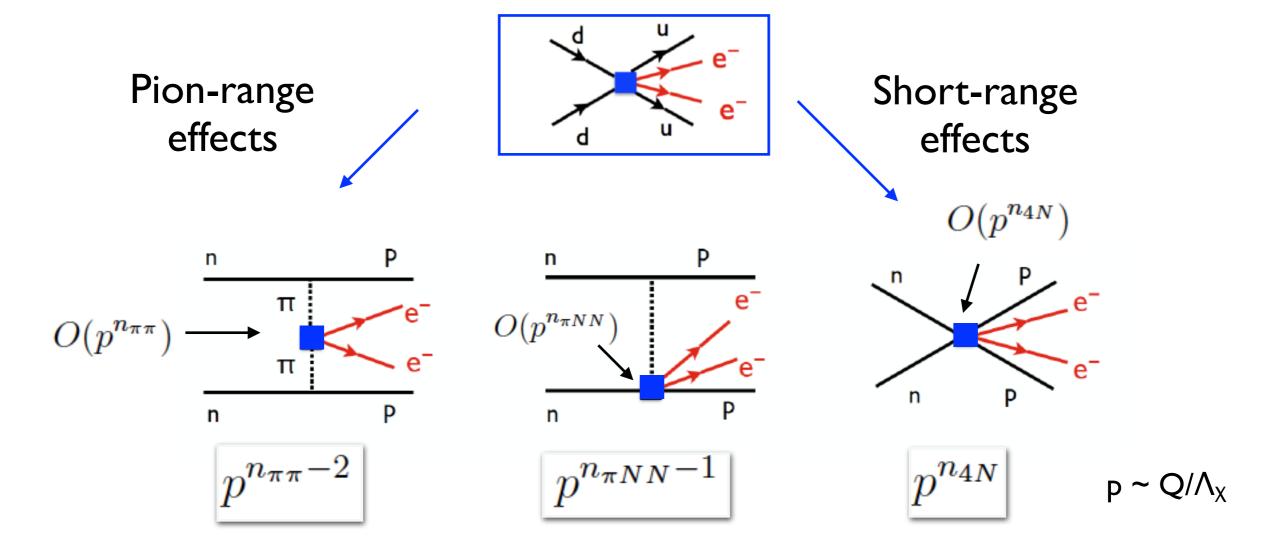
V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443

0νββ from $\mathcal{L}_{\Delta L=2}^{(9)}$



 $c_{\alpha} \sim \text{short-distance coupling (model-dep.)} \times \text{hadronic matrix element}$

0νββ from $\mathcal{L}_{\Delta L=2}^{(9)}$



- Relative importance of $V_{\pi\pi, \pi N,NN}$ depends on O_i 's chiral properties: in Weinberg's counting, 2-pion exchange dominates if $n_{\pi\pi}=0$
- Needed hadronic m.e.: $\langle \pi^+ | O_i | \pi^- \rangle$, $\langle p \pi^+ | O_i | n \rangle$, $\langle pp | O_i | nn \rangle$

Scalar operators in $\mathcal{L}_{\Delta L=2}^{(9)}$

OPERATOR

SU(3)_LxSU(3)_R IRREP

$$\mathcal{O}_1 = \bar{u}_L \gamma^\mu d_L \, \bar{u}_L \, \gamma_\mu d_L \qquad (27_L, 1_R)$$

$$\mathcal{O}_{2,3} = \bar{u}_L d_R \, \bar{u}_L \, d_R \qquad (\bar{\mathbf{6}}_L, \mathbf{6}_R)$$

$$\mathcal{O}_{4,5} = \bar{u}_L \gamma^\mu d_L \, \bar{u}_R \, \gamma_\mu d_R \qquad (\mathbf{8_L}, \mathbf{8_R})$$

- Two ways to obtain $<\pi^+|O_i|\pi^->$:
 - Direct LQCD calculation (CalLat)

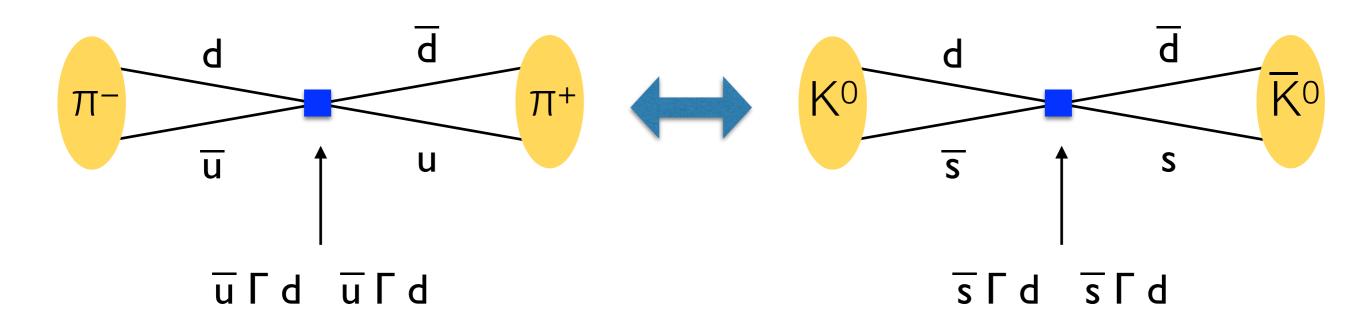
Nicholson et al., 1608.04793

• Indirect LQCD calculation: K-K + chiral SU(3)

V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443, PLB 769 (2017) 460-464

$\langle \pi^+ | O_i | \pi^- \rangle$ from Kaon physics

• Chiral SU(3) relates $<\pi^+|O_i|\pi^->$ to $<\overline{K}^0|O_i(x)|K^0>$

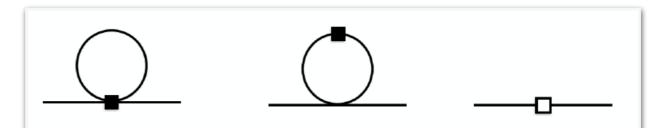


Equal in the SU(3) symmetry limit

$\langle \pi^+ | O_i | \pi^- \rangle$ from Kaon physics

• Chiral SU(3) relates $<\pi^+|O_i|\pi^->$ to $<\overline{K}^0|O_i^{(\chi)}|K^0>$

Chiral corrections



• Input: K- \overline{K} matrix elements at $\mu = 3$ GeV in \overline{MS} scheme

Aoki et al., 1607.00299

V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti 1701.01443, PLB 769 (2017) 460-464

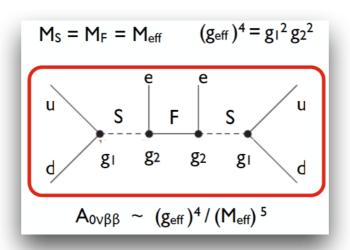
$$\begin{array}{rcl} \langle \pi^{+}|O_{1}|\pi^{-}\rangle & = & (1.0\pm0.1\pm0.2)\times 10^{-4} \text{ GeV}^{4} \\ \langle \pi^{+}|O_{2}|\pi^{-}\rangle & = & -(2.7\pm0.3\pm0.5)\times 10^{-2} \text{ GeV}^{4} \\ \langle \pi^{+}|O_{3}|\pi^{-}\rangle & = & (0.9\pm0.1\pm0.2)\times 10^{-2} \text{ GeV}^{4} \\ \langle \pi^{+}|O_{4}|\pi^{-}\rangle & = & -(2.6\pm0.8\pm0.8)\times 10^{-2} \text{ GeV}^{4} \\ \langle \pi^{+}|O_{5}|\pi^{-}\rangle & = & -(11\pm2\pm3)\times 10^{-2} \text{ GeV}^{4} \\ \end{array}$$

First error: lattice QCD input

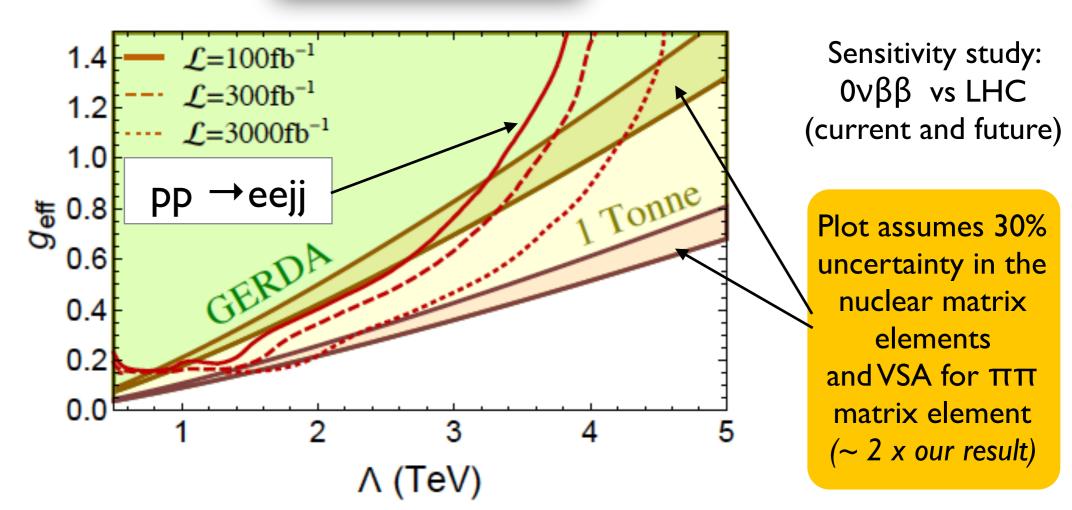
Second error: chiral corrections

Impact on phenomenology

• Dim-9 ops $(O_{2,3})$ from TeV-scale simplified model ~ RPV-SUSY



Peng, Ramsey-Musolf, Winslow, 1508.0444



Conclusions

- EFT approach provides a systematic framework to:
 - relate $0V\beta\beta$ to underlying LNV dynamics (and to collider processes)
 - organize contributions to hadronic and nuclear matrix elements

- Chiral EFT analysis of light VM exchange:
 - Identified potential to LO and N²LO
 - Key new result: leading order contact nn \rightarrow pp operator (LEC enhanced by $(4\pi)^2$ compared to naive dimensional analysis)
 - 0νββ and electromagnetic LECs are related.
 Can be obtained via a (difficult) lattice QCD calculation

Conclusions

- EFT approach provides a systematic framework to:
 - relate $0V\beta\beta$ to underlying LNV dynamics (and to collider processes)
 - organize contributions to hadronic and nuclear matrix elements

- Chiral EFT analysis of short-distance LNV mechanisms:
 - Identified potential to LO
 - Estimated ππ matrix elements from chiral symmetry + lattice Kaon matrix elements
 - More LQCD input: NN matrix elements of 4-quark operators